Top-Down Constraints on Fossil Fuel CO₂ Emissions for Three Urban Areas of California Marc L. Fischer¹, Seongeun Jeong¹, Sally Newman², Arlyn E. Andrews³, Jonathan D. Kofler^{3,4}, Scott J. Lehman⁴, John B. Miller^{3,4}, Jocelyn Turnbull^{3,5}, Ying-Kuang Hsu⁶, Thomas Guilderson⁷, Laura Bianco^{3,4}, Barry Lefer⁸, Andrew R. Jacobson^{3,4}, Kevin Gurney⁹, James M. Wilczak² ¹LBNL, ²CalTech, ³NOAA-ESRL, ⁴CU-CIRES, ⁵Rafter-Lab-NZ, ⁶CARB, ⁷LLNL, ⁸U-Texas-Houston, ⁹AZ State-Tempe We gratefully acknowledge support: - California Energy Commission, Public Interest Environmental Research Program - California Air Resources Board, Research Division - Lawrence Berkeley National Laboratory, Laboratory Directed Research Development - National Oceanic and Atmospheric Administration We also acknowledge valuable advice and input: W. Angevine, S. de La Rue du Cann, J. Eluszkiewicz, C. Gerbig, J. Lin, T. Nehrkorn W. Tassat, T. Wenzel, S. Wofsy ### Outline #### • Motivation Need for of fossil fuel CO₂ (C_{ff}) emission inventory validation at regional scale ## Atmospheric top-down approach — Atmospheric signals diagnostic of emissions #### Results —Initial comparisons of measured and predicted C_{ff} for Central California and LA Basin #### • Conclusion Fossil fuel CO₂ emissions consistent with current CARB inventory estimate to ~ 10% #### California GHG Emissions - California is the first state in US to legislate GHG emission controls - —2006 Global Warming Solutions Act (AB-32): 1990 levels by 2020 - Executive Order S-3-05: Reduce emissions to 80% below 1990 by 2050 - Inventory suggests recent emissions relatively constant - Atmospheric inverse method provides independent check #### California GHG Emissions over Time [CARB, 2010] # Top Down Approach - Measurements: - Background Mead. - Local measurements - Combined with Models: - a Priori Emissions - Meteorology - Gas transport - Statistical comparison yields: - Improved estimate of emissions #### Measurements in Central and Southern California #### a priori Fossil Fuel Emission Map - VULCAN2.0 Fossil Fuel CO2 Emission Inventory (Gurney et al., 2009) - Diurnal emissions by day of week, and month at 0.1 degrees - Multiple data sources for US - Careful attention to quality control - Comparing 2002 VULCAN2.0 with LBNL/CARB county level energy analysis (CARB, 2008) - —Total in-state ffCO2 emissions (~ 370 MtCO₂) match to within 5% - RMS differences ~ 4 MtCO₂ (~ 30%) # Meteorology and Transport - WRF-STILT for California - 5 Domains over W. US - 4 km for California - 1.3 km for SF Bay & LA Basin - Ensemble receptor trajectories - Errors evaluated using profiler/lidar obs - Bias appears negligible during day - Propagated RMS errors 20 50% uncertainty in afternoon CH₄ signals (Jeong et al., 2011) - Footprints capture sensitivity to emissions May-June, 2010 Cal Tech WRF and Lidar # Estimating Fossil Fuel CO₂ $\Delta^{14}CO_2$ vs time at WGC - Measure Δ^{14} C, C_{obs} from tower flask obs and background air - Flask measurements determine $$\begin{split} C_{\rm ff} &= C_{\rm obs} \, (\Delta \rm obs - \Delta b ck) / \, (\Delta ff - \Delta b ck) \\ &- C_{\rm eco} \, (\Delta e co - \Delta b ck) / \, (\Delta ff - \Delta b ck) \\ C_{\rm ff} \ to \sim 1 \ ppm \ if \ \sigma_{\Lambda} \sim 2.8 \ \% \end{split}$$ • Flask measurements determine CO: C_{ff} $$R = (CO_{obs}-CO_{bg})/C_{ff}$$ - 2009-2010 WGC $$R = 12 + /- 1 ppb CO / ppm ffCO2$$ • Estimate continuous $C_{ff}(t)$ as $$C_{ff}(t) = (CO_{obs}(t) - CO_{bg}(t)) / R$$ - Uncertainties: - errors in estimated CO_{obs}, CO_{bg} - variation of R CO vs Cff at WGC # Measured and Predicted ffCO2 Walnut Grove by March, 2009 - Feb, 2010 - Data from 12-23 hr local interval - require well-mixed (91 483 m differences small) - CO fire anomalies removed in summer - Predicted vs measured slopes ~ consistent with unity +/- ~ 10 % - spring had higher flask CO:CO_{2ff} - similar (noisier)results obtained w/12-17 hr subset # Measured and Predicted ffCO₂ May-June, 2010 CalTech - Adopt constant CO:CO_{2ff} ratio - R = 11 ppb CO/ ppm CO_{2ff} (Wunch et al., 2010) - Consistent with two biweekly average flasks - Predicted midday mixing ratios capture measured synoptic variations - Slope of predicted on measured signals match to +/- 10% - Suggests LA emissions ~ consistent with VULCAN map ### Conclusions - Fossil fuel CO₂ dominates CA state total GHG emissions - VULCAN2.0 map matches CA total CO_{2ff} inventory - —Potentially significant differences apparent at county level - Atmospheric radiocarbon measurements valuable - —One year record at Walnut Grove resolves synoptic but not diurnal variations - Carbon monoxide used as a continuous tracer for combustion -- biomass burning can be significant error term - Atmospheric modeling suggests VULCAN emission map captures CO_{2ff} emissions to ~ 10 % for SF Bay, Sacramento, and LA Basin - Longer time periods and additional measurement sites will improve estimates